Lake Water-Level fluctuations forecasting using Minimax Probability Machine Regression, Relevance Vector Machine, Gaussian Process Regression, and Extreme Learning Machine

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Minimax Probability Machine Regression Robust Minimax Probability Machine Regression

We formulate regression as maximizing the minimum probability (Ω) that the true regression function is within ±2 of the regression model. Our framework starts by posing regression as a binary classification problem, such that a solution to this single classification problem directly solves the original regression problem. Minimax probability machine classification (Lanckriet et al., 2002a) is u...

متن کامل

A Formulation for Minimax Probability Machine Regression

We formulate the regression problem as one of maximizing the minimum probability, symbolized by Ω, that future predicted outputs of the regression model will be within some ±ε bound of the true regression function. Our formulation is unique in that we obtain a direct estimate of this lower probability bound Ω. The proposed framework, minimax probability machine regression (MPMR), is based on th...

متن کامل

An Analysis of Relevance Vector Machine Regression

The relevance vector machine (RVM) is a Bayesian framework for learning sparse regression models and classifiers. Despite of its popularity and practical success, no thorough analysis of its functionality exists. In this paper we consider the RVM in the case of regression models and present two kinds of analysis results: we derive a full characterization of the behavior of the RVM analytically ...

متن کامل

Relevance vector machine and multivariate adaptive regression spline for modelling ultimate capacity of pile foundation

This study examines the capability of the Relevance Vector Machine (RVM) and Multivariate Adaptive Regression Spline (MARS) for prediction of ultimate capacity of driven piles and drilled shafts. RVM is a sparse method for training generalized linear models, while MARS technique is basically an adaptive piece-wise regression approach. In this paper, pile capacity prediction models are developed...

متن کامل

TUNNEL BORING MACHINE PENETRATION RATE PREDICTION BASED ON RELEVANCE VECTOR REGRESSION

key factor in the successful application of a tunnel boring machine (TBM) in tunneling is the ability to develop accurate penetration rate estimates for determining project schedule and costs. Thus establishing a relationship between rock properties and TBM penetration rate can be very helpful in estimation of this vital parameter. However, this parameter cannot be simply predicted since there ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Water Resources Management

سال: 2019

ISSN: 0920-4741,1573-1650

DOI: 10.1007/s11269-019-02346-0